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The effect of the phase relation (i.e. phase difference and coupling) between the 
fundamental and subharmonic modes on the transition to turbulence of a mixing 
layer is investigated. Experiments are conducted to study the development of the 
subharmonic and fundamental modes under different phase-controlled excitations. 
Higher-order spectral moments are used to measure phase differences, levels of phase 
coupling, and energy transfer rates between the two modes at different downstream 
locations. Local measurements of the wavenumber-frequency spectra are used to 
examine the phase-speed matching conditions required for efficient energy transfer. 
The results show that when the phase coupling between the fundamental and the 
subharmonic is high, maximum subharmonic growth is found to occur at a critical 
phase difference close to zero. The subharmonic growth is found to result from a 
resonant parametric interaction between the fundamental and the subharmonic in 
which phase-speed matching conditions are satisfied. In contrast, when the phase 
coupling level is low, the phase difference is irregular and varying, the efficiency of 
parametric interactions is low, phase-speed matching conditions are not met and 
subharmonic growth is suppressed. 

1. Introduction 
Interactions between the fundamental and subharmonic instability modes which 

lead to subharmonic growth play an important role in the transition to turbulence of 
mixing layers. Ho & Huang (1982) showed that the subharmonic amplification 
region coincides with the region between vortex roll-up and vortex merging. In a 
naturally growing mixing layer, Hajj, Miksad & Powers (1992) showed that energy 
transfer to the subharmonic via the parametric interaction, where the energy is passed 
from the mean flow to the subharmonic as a result of parametric variations of the 
fundamental, dominates the quadratic mechanism, where the energy is passed directly 
from the fundamental. The analytical studies of Kelly (1967), Monkewitz (1988), 
Nikitopoulos & Liu (1987) and Mankbadi (1985) showed that subharmonic growth is 
a result of its interaction with the fundamental component and this interaction process 
is dependent on the amplitude of the fundamental mode and on the phase difference 
between the two modes. The problem of the effect of fundamental-subharmonic phase 
difference on the subharmonic growth has also been investigated numerically. Patnaik, 
Sherman & Corcos (1976) and Riley & Metcalfe (1980) showed that changing the phase 
difference between the fundamental and subharmonic modes leads to a shift from 
vortex merging to vortex shredding where the cores of the fundamental are destroyed 
by the straining field of the subharmonic. 
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Many experimental investigations have studied the characteristics of the sub- 
harmonic growth and the fundamental-subharmonic interaction mechanisms. In 
single-frequency excitation experiments, Freymuth (1966) and Ho & Huang (1982) 
showed that by varying the forcing frequencies and their levels, the locations of the 
saturation of the fundamental and its subharmonic can be controlled. Miksad (1972, 
1973) observed that the saturation levels of the subharmonic and its fundamental vary 
under single- and double-frequency excitations. Zhang, Ho & Monkewitz (1983) 
showed that the subharmonic development and its saturation level are dependent on 
the phase difference between the fundamental and the subharmonic, and Arby & 
Ffowcs Williams (1984) showed that the subharmonic component can be either 
amplified or depressed depending on its phase difference with the fundamental. Hajj, 
Miksad & Powers (1991) demonstrated that as the phase difference between the 
fundamental and subharmonic modes is changed, the coupling between the 
fundamental and its subharmonic is altered and the growth of the subharmonic mode 
is affected. Yang & Karlsson (1991) showed that simultaneous excitation of the 
fundamental and the subharmonic may lead to vortex merging of different kinds 
(pairing or tearing) depending on the phase difference between the two modes. More 
recently, Rajaee & Karlsson (1992) used downstream measurements of the relative 
phases with respect to the driving signal, and amplitudes of the subharmonic, 
fundamental and their harmonics to show that the velocity field is dependent on the 
phase difference between the fundamental and subharmonic modes. Rajaee & Karlsson 
also measured the enet;gy transfer rates between the different modes and the mean flow 
and showed that energy transfer to the subharmonic is affected by the phase difference 
between the fundamental and subharmonic modes and that energy transfer from the 
mean flow dominates that from the fundamental. 

The importance of fundamental-subharmonic phase difference to the subharmonic 
development is clear and the thrust of this paper is to quantitatively establish whether 
a critical phase difference exists under which energy transfer to the subharmonic is 
most efficient. Since the flow and the structure of the interacting modes, including the 
relative phases, evolve with downstream distance, the work presented here focuses on 
local measurements of the phase difference and corresponding levels of fundamental- 
subharmonic phase couplings and energy transfer rates. This allows us to watch the 
evolving dynamics of interaction mechanisms and subharmonic development and 
identify the critical stages. In this investigation, a series of experiments with double- 
frequency excitations at the fundamental and subharmonic frequencies with different 
relative phases were conducted in order to quantify the effect of the fundamental- 
subharmonic phase relation, i.e. the phase difference and interaction coupling level, on 
the mechanisms responsible for subharmonic growth. Polyspectral analysis is used to 
quantify interaction coupling levels, phase differences and the corresponding linear, 
parametric and quadratic energy transfer rates. The results show that a critical phase 
difference exists for which energy transfer to the subharmonic is most efficient. 

2. Experimental set-up and data analysis 
The experiments were conducted in an open return, low-turbulence wind tunnel. The 

tunnel is driven from the downstream end by a positive displacement pump. The test 
section is isolated from the pump noise by a sonic throat and two resonating filters. A 
more detailed description of the characteristics of the contraction section, stilling 
chamber, and splitter plate is given in Hajj (1990) and a schematic of the facility is given 
in Hajj et al. (1992). The test section of the wind tunnel has a width of 30 cm, a height 
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FIGURE 1. Schematic illustration of the free shear layer experimental conditions. 

0, = 0.064 cm 

of 20 cm, and a length of 140 cm. The bottom wall of the test section is adjustable for 
downstream pressure gradient control. By adjusting this wall, downstream deviations 
of the upper and lower free-stream velocities were limited to less than 0.2 YO and 0.8 % 
of their respective mean values. Limited spanwise measurements showed that velocity 
deviations in the spanwise direction were less than k 0.45 YO of the average velocity of 
the two streams. The high-speed stream was at 7.17 m/s and the low speed stream was 
at 1.51 m/s, see figure 1. This resulted in a velocity differential AU = U,- U, = 
5.66 m/s, and a velocity ratio, defined as R = (4- V,)/(V, + U,), equal to 0.65. The 
initial momentum thickness of the high-speed-side free-stream velocity, O,, was equal 
to 0.064 cm. Based on momentum thickness and the high-speed free-stream velocity, 
the Reynolds number was 305. At x = 25.0 cm, the width of the test section was 12.56, 
and at x = 40.0 cm, the width of the test section was 8.56,, where 6, is the local 
vorticity thickness. The measured frequency of the fundamental instability, f,, was 
215 Hz. The corresponding measured wavelength, A,, was 1.98 cm. The results 
presented here are for velocity fluctuations measured at the cross-stream locations of 
maximum uims with a Disa 56C/N hot-wire anemometry system. A special probe 
(Jones et al. 1988) with two spatially separated sensing elements was used to measure 
energy transfer rates and frequency-wavenumber spectra. The spectral properties of 
the fluctuation field at each spatial point were calculated digitally from eight 
independent records. Each record consisted of simultaneous data from the two sensors 
and contained 4096 points sampled at a rate of 1000 Hz. This yielded a Nyquist 
frequency of 500 Hz. Power spectra were calculated using fast Fourier transform 
techniques. Ensemble averages over 64 realizations of 256 points each were used. This 
yielded a resolution bandwidth of 3.90 Hz. Estimates of the bicoherence were made by 
ensemble averaging over 256 realizations of 128 points each. This yielded a resolution 
bandwidth of 7.81 Hz. The downstream distance x is normalized with R/Ao as 
suggested by Huang & Ho (1990). 

The fundamental and subharmonic modes were excited acoustically. The excitation 
system included a function generator controlled by an IBM-PC, a stereo amplifier, and 
two speakers. This set-up enabled us to control the relative amplitudes and phases 
between the fundamental and the subharmonic. Four different cases of phase- 
controlled excitations were studied. In each case, the phase of the subharmonic was set 
at zero while the phase of the fundamental was varied in increments to establish four 
basic phase-difference experimental conditions. Figure 2 shows the spectral energy 
distribution in the free stream under the four different excitation conditions. The 
measured amplitudes of the fundamental and subharmonic modes in the free stream at 
Rxlh,, = 0.06 were of the order of 0.00014U1. 

The amplitudes of the fundamental components along maximum uims in the four 
cases of excitation at Rx/A, = 0.06 were of the order of 0.O0l8U1. The amplitudes of 
the subharmonic were of the order of 0.0034U1. These values are about five times 
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FIGURE 2. Spectral energy distribution under different excitation conditions at Rxlh, = 0.06 in the 
free stream. 

larger than the corresponding values under natural conditions. Corresponding values 
of the phase difference, based on the extrapolation of the values at Rx/h,  = 0.3 and 1 .O 
in the four cases are -0.27x, 0.24x, 0.697c, and 1.16x, respectively. 

3. Effect of the phase relation 
3.1 .  Development and coupling of the spectral components - natural transition 

As shown in figures 3(a) and 3(b), the energy content at the fundamental and 
subharmonic frequencies vary in the cross-stream direction. These figures show the 
measured cross-stream variations of the energy of the fundamental and subharmonic 
modes at different downstream locations between Rx/h,  = 0.06 and 3.3 .  The dashed 
line in these figures traces the location of maximum u;ms in the upper stream. Figure 
3(a) shows that cross-stream variation of the energy of the fundamental mode is 
characterized by a double peak and a local minimum at the centreline. Figure 3(b) 
shows that the cross-stream variation of the energy of the subharmonic mode is 
characterized by a single peak at the centreline. The fundamental-subharmonic 
interaction is dependent on their respective amplitudes and relative phases. Because the 
amplitudes and phases of the fundamental and subharmonic modes vary in the cross- 
stream direction, it is expected that the coupling characteristics will also vary in the 
cross-stream direction. As shown by Hajj et al. (1992), the fundamental-subharmonic 
coupling characteristics can best be detected by the auto-bicoherence. A zero value of 
the auto-bicoherence indicates a low-coupling level between the two modes and a value 
near one indicates a high-coupling level. Figure 3 (c) shows the cross-stream variations 
in the auto-bicoherence between the two modes. The results show that coupling 
variations in the cross-stream are characterized by a local peak at maximum u;,,, 
which corresponds to a local maximum in the fundamental component distribution. 
The coupling variation is also characterized by a minimum at the centreline. 
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if 
3. Cross-stream variations of (a) the energy of the fundamental mode, (b) the energy of the 

subharmonic mode and (c) the coupling level between the two modes under natural excitation 
conditions. 

Ho et al. (1991) measured cross-stream variation in the level of phase jitter in the 
velocity signal. The results showed that fluctuations near the centreline are 
contaminated by small eddies and exhibit a high level of phase jitter when compared 
to cross-stream locations y/B, between 4 and 10. This increase in the level of phase jitter 
with cross-stream variation from y/B, = 4 to the centreline in the results of Ho et al. 
(1991) is in qualitative agreement with the decrease in the coupling level between the 
fundamental and the subharmonic as the centreline is approached in our results. In the 
work presented here, the effects of the phase relation on fundamental-subharmonic 
interactions are measured at cross-stream locations corresponding to maxima in u;ms 
and hence maximum fundamental-subharmonic coupling. It must be noted that, 
between Rx/h, = 1.3 and 3.3, locations of maximum uim8 correspond to a cross-stream 
location of y /B,  that varies between 3.5 and 8. This corresponds to the region defined 
by Ho et ~ l .  (1991) where phase jitter is minimum. 

The development of the fundamental and subharmonic modes under ‘natural’ 
excitation conditions, along maximum ui,,, is shown in figure 4. The characteristics of 
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FIGURE 4. Downstream development of the fundamental and subharmonic modes under natural 
excitation conditions. 

growing, saturating and decaying fundamental and subharmonic modes are similar to 
those observed in the experiments of Miksad (1972, 1973), Ho & Huang (1982), and 
many others. Initially, up to Rx/h, = 1 .O, both modes grow exponentially at rates close 
to those predicted by linear stability theory. At Rx/h, = 1.3, the fundamental mode 
starts to equilibrate. Ho & Huang (1982) showed that the beginning of the saturation 
of the fundamental marks the vortex roll-up as observed in flow visualization 
experiments. While the fundamental is saturating, the subharmonic equilibrates, 
between Rx/h, = 1.3 and 2.0. At this location, the amplitude of the subharmonic 
resumes its increase. The growth of the subharmonic continues until it reaches 
saturation at Rx/h, = 3.2. The beginning of the saturation of the subharmonic has 
been related to the vortex merging process (Ho & Huang 1982). 

The region between Rx/h, = 1.3 and 3.2 is particularly important in the development 
and growth of the mixing layer. By Rx/h, = 1.3, the fundamental mode has developed 
into a finite-amplitude wave that starts to roll up to form the first coherent structure 
observed in the mixing layer. Between Rx/h, = 1.3 and 3.2, the local momentum 
thickness of the mixing layer doubles and the energy extraction from the mean flow 
increases significantly (Hajj et al. 1992). Previous experimental results suggest that in 
this region, the finite-amplitude wave that has the frequency of the fundamental locks 
itself to the subharmonic and both waves start travelling at the same phase speed (Ho 
& Huang 1982). This results in an energy transfer to the subharmonic via a parametric 
resonance mechanism (Hajj et al. 1992). 

Measurements of quantities such as phase difference, phase coupling (i.e. locking), 
and phase speed matching are necessary to provide the experimental counterpart for 
existing theories. However, under ‘natural’ conditions, these quantities are not 
constant with time and typically have large variances. A more meaningful measure of 
these quantities and subsequent comparison with theories can be obtained by reducing 
this variance through controlled excitation of the mixing layer. 
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(a) Case of coupled modes resulting in constant phase difference and high level of auto-bispectrum. 
(b) Case of non-coupled modes resulting in random phase difference and low auto-bispectrum. 
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3.2. Fundamental-subharmonic phase diference and coupling 
Because transition starts with a linear region where fluctuations at the fundamental and 
subharmonic frequencies travel at different phase speeds, the phase relation between 
the two modes changes with downstream distance. It is the phase relation at the onset 
of parametric and nonlinear interactions that determines the efficiency of energy 
transfer to the subharmonic. In general, because the fundamental and subharmonic 
modes have different frequencies, the instantaneous phase difference in a time series 
will vary from one instant to another. Nikitopoulos & Liu (1987) and Riley & Metcalfe 
(1980) chose to specify phase difference A a 0  by setting the phase of the subharmonic 
to zero. In this work, we will follow this convention for AQo and set the phase of the 
subharmonic to zero at t = 0. Figure 5 shows the case of a perfectly phase-coupled 
fundamental with its subharmonic where the phase difference, AQo, at t = 0 is :n. 
Because the frequency of the fundamental is twice that of the subharmonic, the 
quantity 52 defined by Quo) - 2@u0/2) will at all times be equal to the value measured at 
t = 0 and will hence yield A@,,. Therefore, a statistical average of 52 over successively 
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FIGURE 7. Downstream variations of the phase difference between the fundamental and 
subharmonic modes under the different excitation conditions. 

measured records can be used as a meaningful measure of A@, from record to record. 
In the case where the coupling between the fundamental and subharmonic modes is 
only partial, the quantity given by 52 in any given record will be different. 

A statistical measure of 52, and thus the phase difference, A@", can be obtained from 
the phase of the auto-bispectrum, defined as A(f , ,  -f,/2) = q X ( f , )  X*(f,/2) x*(f0/2)l .  
In  this definition, X(f,) and X(j" /2)  are the complex Fourier transforms of the 
fluctuating signals at the frequencies of the fundamental and subharmonic modes and 
the notation a...] denotes a statistical average. The auto-bispectrum is a complex 
quantity that can be represented as a vector (Ritz 1991). If, as shown schematically in 
figure 6(a) ,  the phase of the auto-bispectrum vector has a small variance over many 
time records, the magnitude of the average vector of the auto-bispectrum is large and 
the three modes are highly coupled and coherent. In contrast, if, as in figure 6(b), the 
phase of the auto-bispectrum varies randomly over many records, the vector average 
of the auto-bispectrum will be near zero indicating that the three modes are not 
coupled and thus not correlated. 

Kim & Powers (1979) showed that the variance of the auto-spectrum estimator is 
dependent on the auto-bicoherence defined as 

Based on this, the level of confidence that can be placed in our measure of 52 is also 
a function of the auto-bicoherence. A value near zero indicates a random phase 
relation between poorly coupled fundamental and subharmonic modes and the 
measured 52 is irregular. A value near one indicates that the two modes are highly 
coupled and the measured 52 remains constant. Any value in between indicates a degree 
of partial coupling and determines the degree of variance of the measured 52 and hence 
our estimate of A@,. 
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FIGURE 8. Downstream variations of the auto-bicoherence between the fundamental and the 
subharmonic modes under the different excitation conditions. 

Figure 7 shows the variation in the measured phase difference, A@,, in the 
downstream direction under ‘natural’ and controlled excitation conditions. At 
Rx/& = 0.3, the phase differences in the four phase-controlled excitations are 0.90q 
1 . 3 5 ~ ,  1.79n, and 2.32x, respectively. While, the value of the phase difference in each 
excitation case changes between Rx/h, = 0.3 and 1.0, the roughly increments 
between the different cases is maintained throughout this region. By Rx/h,  = 1.3, the 
phase difference between the fundamental and the subharmonic in the four cases of 
excitations have changed to -0.23q 0 . 2 2 ~ ,  0.557c, and 1 . 2 4 ~ .  The level of confidence 
in these values, as estimated by the level of the auto-bicoherence, is shown in figure 8. 
The levels of coupling between the fundamental and the subharmonic in the first three 
cases are larger than 0.6 and 0.7, slightly larger than the values measured at Rx/h,  = 
1.0. This indicates that, in these three cases, the fundamental and subharmonic modes 
are highly coupled and that the corresponding measured phase differences have a very 
low variance. These three cases will be considered as examples of high fun- 
damental-subharmonic coupling and will be referred to as Cases I, 11, and 111. In the 
fourth excitation case, the phase difference at Rx/h,  = 1.3 is 1 . 2 4 ~ ,  and figure 8 shows 
that the coupling level has decreased to 0.3 (low level of coupling) which indicates that 
the phase difference is irregular and may vary considerably from the measured value. 
This fourth case will be considered as an example of low fundamental-subharmonic 
coupling and will be referred to as Case IV. 

As the transition progresses, figure 7 shows that, by Rx/h,  = 1.6, the phase 
differences in all four cases are tending towards a common value near zero. Figure 8 
shows that the level of coupling between the fundamental and subharmonic maintains 
a high value of Cases I, 11, and 111 and a low value in Case IV. By Rx/h,  = 2.0, the 
coupling level in Case IV increases to match those levels measured in the other three 
cases and the phase differences in all four cases converge to values that are near zero. 
Beyond Rx/A, = 2.0, the variations in the phase difference in all the cases follow the 
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same general behaviour. A slight decrease in the measured values of the phase 
difference is noted. All the measured phase differences maintain approximately 
constant values over distances of order of one fundamental wavelength, A,. 

Measurements under different fundamental-subharmonic phase differences and 
corresponding coupling show that the basic characteristics of transition development 
in the downstream direction are altered, particularly in the region between Rx/h, = 
1.3 and 1.6. In the initial linear stage, the coupling levels between the fundamental and 
the subharmonic modes varied between 0.6 and 0.7 in all cases, and the roughly tn 
phase increments were maintained. Between Rx/h, = 1.3 and 1.6, however, the level of 
phase coupling between the fundamental and the subharmonic in Cases I, 11, and I11 
increased to values between 0.8 and 0.9, which are larger than the levels measured in 
the initial linear stage. In contrast the level of phase coupling between Rx/h, = 1.3 and 
1.6 in Case IV decreased. Beyond Rx/h, = 1.6, the level of coupling between the 
fundamental and its subharmonic in Case IV increased to levels comparable with those 
measured in this region for the other three cases. Coupling-level measurements under 
‘natural’ excitation conditions show a pattern similar to Case IV. By R x / A ,  = 2.0, the 
phase difference in all cases is close to zero. 

In order to identify the overall effect of the fundamental-subharmonic phase relation 
on the mode coupling between other flow components, two-dimensional contour plots 
of auto-bicoherence measurements of the longitudinal fluctuations under natural, Case 
11, and Case IV excitations are shown in figure 9. The plots are shown at two different 
downstream locations, namely Rx/h, = 1.6 and 2.3. These two locations demonstrate 
a critical feature of the role of phase coupling in the transition. At Rx/h, = 16, the 
coupling in Case I1 is at a very high value (> 0.9) while in Case IV it is very low 
(< 0.3). By Rx/A, = 2.3, the coupling level between the fundamental and its sub- 
harmonic is fairly high in all cases. 

At both locations, and under all the excitation conditions, bicoherence plots exhibit 
peaks at Cf,,f,) in the sum region and (2f0, - f,) in the difference region. This indicates 
high coupling between the fundamental and the first harmonic. While the fundamental 
Cf,)-first harmonic (2h) coupling is not effected by the different phase excitation 
conditions, subharmonic couplings are affected, especially at R x / A ,  = 1.6. Note that 
the coupling level between the subharmonic and the other coherent modes, f,, 3&/2 
and 2f,, is larger in Case I1 than in Case IV or in the natural excitation case. At 
Rx/h, = 2.3, the level of coupling at u,, -f,/2), in Case 11, remains large (> 0.9). Also, 
the level of coupling at cf,, -f0/2) at Rx/A, = 2.3, in Case IV and under natural 
excitation, is larger than that at Rx/h, = 1.6. This is accompanied by an increase in the 
coupling level between the subharmonic and the different modes, f,, 3f0/2 and 2f0. 

3.3. Downstream development of the spectral components - phase-controlled transition 
The downstream development of the uim8 amplitudes of the fundamental and 
subharmonic modes, under the four different cases of phase-controlled excitation 
discussed above, are shown in figures 10(a) and lo@), respectively. Both figures show 
that, in all cases, the growth of these two modes in the initial region up to Rx/h, = 
1 .O follows the same behaviour. The measured non-dimensional growth rates aB,/R of 
the fundamental varied between 0.096 and 0.10 under all excitation cases. Those of the 
subharmonic varied between 0.050 and 0.052. These values are in agreement with those 
predicted by the linear spatial theory of Monkewitz & Huerre (1982). The region up 
to Rx/A, = 1.0 will be referred to as the linear instability region. 

For all cases, figure 10(a) shows that the fundamental starts to saturate at Rx/A, = 
1.3. Also, the variations in the amplitude of the fundamental in the downstream 
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FIGURE 10. Downstream development of (a) the fundamental mode and (b) the subharmonic 
mode under the different excitation conditions. 

direction beyond this point are similar under all the phase-controlled excitation 
conditions. Figure 11 shows that the subharmonic starts to deviate from exponential 
growth at the same position where the fundamental starts to saturate, i.e. at &/A, = 
1.3. This location will be referred to as the location where the onset of 
fundamental-subharmonic mode interaction starts, and the increments in phase 
difference between the four cases departs from in, see figure 7. In contrast to the 
downstream development of the fundamental amplitude, the subharmonic amplitude 



Fundamental-subharmonic interaction 415 

variations in the downstream direction, beyond Rx/h,  = 1.3, are dependent on its 
phase relation with the fundamental. When the flow is excited, in Cases I, 11, and 111, 
where the coupling level is high and where the phase difference is close to zero, the 
subharmonic continues to grow beyond Rx/h,  = 1.3 to achieve saturation at Rx/h,  = 
2.9. This indicates that the exponential growth of the subharmonic in Cases I, 11, and 
I11 is followed directly by an efficient mechanism for the transfer of energy to the 
subharmonic. On the other hand, when the flow is excited in Case IV, where the 
coupling level is very low between Rx/A, = 1.3 and 1.6, the subharmonic growth is 
suppressed. However, at Rx/A, = 2.0, where the coupling level between the 
fundamental and the subharmonic in Case IV increases to match the high levels of 
Cases I, 11, and 111 and where the phase difference is near zero, the subharmonic 
amplitude resumes its growth and finally saturates at Rx/h,  = 3.2, at a level some 35 % 
smaller than that observed in Cases I, 11, and 111. The subharmonic growth in Case IV 
comes closest to matching that observed under the natural conditions. 

3.4. Fundamental-subharmonic phase-speed matching 
Hajj et al. (1992) showed that the growth of the subharmonic beyond the initial linear 
region is controlled by a parametric interaction between the fundamental and the 
subharmonic. The region of subharmonic growth in Cases I, 11, and 111, between 
Rx/h,  = 1.3 and 2.9, will be referred to as the parametric region of subharmonic growth. 
In Case IV, subharmonic growth is suppressed at Rx/A, = 1.3 and 1.6 before it resumes 
to grow beyond Rx/h, = 2.0. In this case, the parametric region of subharmonic 
growth in Case IV starts at Rx/& = 2.0 and continues up to Rx/A, = 3.2. A 
comparison of the values of the fundamental-subharmonic phase difference in the 
regions of parametric subharmonic growth indicates that a critical phase dzfference 
roughly equal to zero exists for maximum subharmonic growth via parametric 
resonance. Similar behaviour is obtained in the numerical analysis of Riley & Metcalfe 
(1980). Parametric resonance models suggested by Kelly (1967) for a temporally 
developing free shear layer, and by Monkewitz (1988) for a spatially developing free 
shear layer require that phase locking or synchronization is satisfied for efficient 
interactions to take place. In the experiments reported here, the extent of downstream 
phase-speed matching was determined by measuring the local phase speeds of the 
fundamental and subharmonic modes. 

Beall, Kim & Powers (1982) devised a technique to estimate the local wavenumber/ 
frequency spectrum, g(k,f). This quantity provides a measurement of the local power 
s2ectrum of the fluctuations as a function of frequency f and wavenumber k. From 
S(k , f ) ,  one can estimate the local dispersion relation and examine phase-speed 
matching conditions. In most transitioning flows, the relation between frequencyf and 
wavenumber k, and subsequently the dispersion relation kdf), is not purely 
deterministic. g(k,f)  will yield a band of wavenumbers associated with a given 
frequency and a simple measurement of phase-speed matching conditions is not 
possible. In addressing this problem, we have taken the approach that the 
fundamental-subharmonic interaction process will be dominated by the narrow bands 
of wavenumbers that contain most of the f ,  and f0/2 energy. A measure of phase 
velocity at frequency f that weights the phase speed by the energy of the wavenumber 
associated with that frequency, can be obtained by weighting the ratio 27tf/k by the 
joint spectral density function, s(k,f)  : 
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FIGURE 1 1 .  Downstream development of the phase-speed ratio, Cr~0)/C,~0/2), of the 
fundamental and subharmonic modes under the different excitation conditions. 

where the joint spectral density function is a normalized value of g(k,f) and is given 
as 

kJ 
Figure 11 shows the measured variations in the ratio of the phase speeds of the 

subharmonic to the fundamental in the downstream direction. In the linear instability 
region of the transition, between Rx/h,  = 0.33 and 1.0, in Cases I, 11, and I11 the ratio 
of the phase speeds of the subharmonic to the fundamental, C,(f/2)/CrCf), varies 
between 1.9, at Rx/h,  = 0.33, and 1.4 at &/A, = 1.0. Further downstream, at 
Rx/h,  = 1.3, the ratio decreases at 1.0. At this location, in Cases I, 11, and I11 the 
coupling levels between the three modes are larger than 0.8 (figure 8), the phase 
difference is near zero (figure 7), and the subharmonic growth rate is maximum (figure 
lob). The ratio of the subharmonic phase speed to that of the fundamental varies 
between 0.9 and 1.0 in the region between Rx/A, = 1.3 and 3.2, i.e. over the parametric 
region of subharmonic growth, indicating that the subharmonic is travelling with a 
phase speed that is slightly smaller than that of the fundamental. 

In Case IV, the initial variation of the phase-speed ratio between Rx/h,  = 0.33 and 
1.0, is similar to that in Cases I, 11, and 111. However, at Rx/A, = 1.3, the ratio is not 
equal to unity as in Cases I, 11, and 111. At this location the phase coupling between 
the two modes is low (figure S), and the subharmonic growth is suppressed (figure lob). 
Further downstream, and particularly between Rx/h, = 2.0 and 3.2, the region where 
subharmonic growth resumes (figure lob), the ratio of the phase speeds approaches 
unity. In effect, the parametric resonance is delayed until the phase-speed matching 
condition is achieved. The variations in the ratio of the phase speeds of the 
subharmonic and fundamental modes under the natural conditions are similar to those 
of Case IV. 
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3.5. Efect of phase relation on energy transfer rates to the subharmonic 
3.5.1. Modelling of energy transfer rates to the subharmonic 

Hajj et al. (1992) described a technique for measuring local values of energy transfer 
due to linear, parametric, and nonlinear (quadratic) mechanisms. The relation between 
the velocity fluctuations at two separated but closely spaced sensors was modelled as 
an input-output system related by linear and interaction transfer functions of the form 

E[YU,) X*U,)l= ~ U m )  ~ [ ~ U , )  X*(fm)l 

+ c 'J2fj E [ ~ C f , )  X(&) X*(f,)l, f, = .L (4) 
f6kf j=fm 

where the left-hand side represents the cross-power spectrum. The first term on the 
right-hand side models the linear contribution to the cross-spectrum from the auto- 
spectrum at the upstream sensor at the same frequency componentf,. The second term 
models interactions between the f ,  and 4 components at the upstream sensor that 
contribute to the cross-spectrum at the f, component. For the particular case of the 
fundamental-subharmonic interaction (i.e. when f ,  =f,/2, f i  =fo and f ,  = f0 /2) ,  (4) 
becomes 

E[YUo/2) X*U0/2)1 = LUo/2) E[X(fo/2) X*U0/2)l 
+I;$& JWUo) XUo/2> X*U0/2)1. (5)  

When the fundamental and subharmonic components interact nonlinearly, energy 
transfer takes place between the fundamental and the subharmonic and the amplitude 
of both modes vary. In contrast, when the interaction is parametric, variations in the 
subharmonic component will not affect the fundamental mode and XUo) can then be 
treated as a constant. The interaction term can then be divided into parametric and 
nonlinear quadratic parts, such as 

I;$,,/2 XUo/2) X*U0/2)1 = XUO) Pk;;,,/z E[X(fo/2) X*(f0/2>1 
+ Qk:;o,t E[XUJ xUo/2) X*Y0/2)1* (6) 

The first term in (6) models parametric interactions and the second term represents 
nonlinear quadratic interactions. For parametric interactions Xuo) can be treated as 
a constant (Kelly 1967), and thus is taken outside the expected value, demonstrating 
the linear-like behaviour of parametric effects. Equation (5 )  can then be rewritten as 

E[YCf,/2) X*cf,/2)1= Lecf,/2) E[XGf, /2)  X*cfo/2)1 
+ Qk(;,,/2 E"&) x(f,/2) x*U0/2>19 (7) 

where LeU0/2) is defined as an 'effective ' linear transfer function, which includes both 
linear and parametric effects and has the following form: 

(8) 
The dependence of the parametric energy transfer on the complex Fourier transform 
at the fundamental frequency in our model is consistent with the analyses of Kelly 
(1967) and Monkewitz (1988). As shown by Ritz, Powers & Bengtson (1989), the 
transfer functions defined in (7) are related to more physically meaningful variables 
such as the growth rates, dispersion relation and quadratic three-wave coupling 
coefficients. In the case of the subharmonic component, the effective complex linear 
transfer function, L,(f,/2), is given by 

(9) 

LeUoI2) = Ldf,/2) +XU,) P25,,/2. 

Lecf0/2) = [(aeU0/2) + ik,df0/2)) Ax + 1 - iA@cf,/2)] eiAecfO/z). 
16 FLM 256 
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In this equation, A@Cf0/2) is the phase shift of the subharmonic mode between the 
two sensors, a,(f,/2) is the ‘effective’ linear growth rate, and keCf,/2) is the ‘effective’ 
dispersion relation. The complex function 1 -iA0u0/2) accounts for the advection of 
the subharmonic mode from the upstream to the downstream sensor. The effective 
linear growth rate, aecf,/2), includes the linear as well as the parametric effects and, 
based on (8), can be written as 

(10) %?(f,/2) = a,Cfo/2> + a,Cfo/2), 
where alcf,/2) and a,Cf,/2) = Re [Xcf,)  are the exponential and parametric 
growth rates respectively. 

Ritz & Powers (1986) and Kim & Powers (1988) present two different methods for 
estimating the linear and quadratic transfer functions given in (7). Based on these 
methods, Hajj et al. (1992) quantified the energy transfer rates between the two sensors 
of the probe by an energy transfer relation of the form: 

(1 1) 
where AS&) = &,(f,) - S,,.,) is the difference in energy measured between the 
upstream and downstream sensors of the probe. The detailed relations between these 
transfer rates and the linear and quadratic transfer functions are given by Hajj et al. 
(1992). S i j J  accounts for that part of the difference that is due to linear and 
parametric mechanisms, S,cf , )  accounts for the part due to nonlinearly quadratic 
mechanisms, and S,,&) is referred to as linear-quadratic energy transfer because it 
includes both transfer functions. S,,V,) is a result of the non-Gaussian property of 
the input signal and thus includes an upstream memory factor. In order to determine 
local energy transfer characteristics, SLQcf , )  must be minimized. Recently, Kim et al. 
(1991) presented a minimum mean-square error estimation technique that allows the 
linear-quadratic term, SLQcfm), to be eliminated. The effective linear and quadratic 
transfer functions are determined from the following equations : 

(12) 
and 

Asurn) = ‘%Cf,> + sQum> + s,?.,Qcfm)9 

~ e c f , )  = E[YCf,)  ~*U,~llWU,) X*U,)l 

where the ‘effective’ linear energy transfer rate is given by 

and the nonlinear quadratic energy transfer rate, TQcf,), is given by 

= C Qk;;l C Qkf,E[X*(fJ X*cf,> -WJ XY;>l/Ax- (16) 
fh?*fz-fm f i l t f j - f ,  

In the above equations, Ax denotes the streamwise separation between the two sensors. 
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FIGURE 12. Downstream development of the effective linear growth rate of the subharmonic 
mode, n,Cf,/2), under the different excitation conditions. 

For the case of the fundamental-subharmonic interaction, the ‘effective’ linear 
energy transfer rate, q,u0/2), is given by 

T,c(f,/2) = 2 a,Cfo/2) E[XUO/2) X*(f,/2)1 
= 2{@1Cf,/2) -w(foI2) x*u0/2>1+ Re [p;&,, E[X(fo) XUo/2) ~*(fol2>1>, 

(17) 
where the linear and parametric energy transfer are represented by the first and second 
terms in the brackets, respectively. Note that strictly speaking, the second term of 
(17) involves the difference interaction of the form f , - f , / 2  = f , / 2 .  Note also the 
dependence of the parametric energy transfer on the complex Fourier transform at the 
fundamental frequency. This shows the importance of the fundamental amplitude and 
its phase relation with the subharmonic for parametric energy transfer. 

3.5.2. Estimates of energy transfer rates to the subharmonic 
Estimates for linear and quadratic energy transfer rates given in (1 6) and (1 7) were 

used to investigate two mechanisms put forward by Kelly (1967) for subharmonic 
growth beyond the linear instability region. In Kelly’s first mechanism, a periodic 
component of the mean flow that originates from the fundamental mode and therefore 
is characterized by its frequency and wave number interacts with a disturbance to 
reinforce another disturbance. In this case, the periodic component will interact with 
the 3/2 harmonic to reinforce the subharmonic and vice versa. This mechanism is 
similar to the three-wave resonance phenomenon discussed by Raetz (1959) and is a 
part of equation (16) in our model. In Kelly’s second mechanism, the periodic 
component set up by the fundamental interacts with a disturbance at the subharmonic 
frequency to reinforce the energy at the subharmonic. This mechanism is basically a 
parametric resonance phenomenon and appears as a part of the energy transfer rate 
given in equation (17). Estimates of the effective linear growth rate of the subharmonic, 

16-2 
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a,(f0/2), for the different cases of excitation, are given in figure 12. Note that in all 
cases, the measured effective linear growth rates, a,(fo/2) = $~,cf,/2)/S,,.0/2)), up 
to Rx/h, = 1.0, are close to 0.05 (l/mm) which falls close to the measured values 
obtained by assuming exponential growth and determined based on the relation 
al(fo/2) = (l/Ax) In [I Y(~o/2)~z/~Xcf,/2)~z]l.". This shows that, in this initial region, the 
growth of the subharmonic component is independent of any interaction mechanisms 
with the fundamental. Beyond this initial instability region, the measured effective 
linear growth rate shows different values under the different cases of phase-controlled 
excitations. 
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FIGURE 13. Downstream variations of the linear, T,c( f 0 / 2 ) ,  quadratic, T,cf,/2), and total, l '3JJ2) ,  
energy transfer rates to the subharmonic for (a) Case I, (b )  Case 11, (c) Case 111, and (d )  Case IV 
excitation. 

In Cases I, 11, and 111, where the coupling level between the fundamental and the 
subharmonic is large (figure 8), and where the phase difference between the two modes 
is close to zero (figure 7), the growth rate in the parametric region of subharmonic 
growth has the same order of magnitude as that measured in the linear instability 
region up to Rx/h, = 1.0. In Case IVY at Rx/h, = 1.6, where the coupling between the 
two modes is low (figure 8) and where the phase difference is not constant, the growth 
rate sharply decreases to slightly less than two orders of magnitude below that 
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Rx /& = 0.3 RxIA, = 1.3 

Cases @(.Lo) - 2@(f,/2) bz(f,,f,/2) @(&) - 2@i(f,/2) b2(f,,fo/2) 
I 0 . 9 O K  0.65 (high) - 0 . 2 3 ~  0.82 (high) 
I1 1.3511 0.68 (high) 0.21II 0.75 (high) 
I11 1.79K 0.70 (high) 0 . 5 5 ~  0.70 (high) 
IV 2 . 3 2 ~  0.62 (high) 1 . 2 4 ~  0.32 (low) 
Natural 0.7411 0.69 (high) -0.2711 0.39 (low) 

TABLE 1. Phase difference and coupling characteristics between the fundamental and subharmonic 
modes at two downstream locations 

measured in Cases I, I1 and 111, and the growth of the subharmonic is suppressed 
(figure lob). The same behaviour is observed under the natural conditions. Further 
downstream, as the subharmonic resumes its growth at &/Ao = 2.0, the level of linear 
growth rate increases to levels comparable with those measured in Cases I, I1 and 111. 
This increase is maintained up to Rx/h, = 3.2. 

The variations in the downstream direction of the relative levels of the linear, 
quadratic and total energy transfer rates to the subharmonic component, in Cases I, 
11, I11 and IV are shown in figures 13 (+13 (d), respectively. In the initial region of the 
subharmonic growth, up to Rx/h, = 1.0, the linear energy transfer rate increases 
exponentially in all cases, which shows that the subharmonic growth in this region is 
governed by a linear instability mechanism. Further downstream, the linear energy 
transfer rate, T,ecf,/2), in Cases I, 11, and 111, is always larger than the quadratic energy 
transfer rate, TQcf,/2). The energy increase of the subharmonic component in these 
Cases (figure lob), indicates the importance of linear-like mechanisms, such as the 
parametric mechanism, in the energy transfer to the subharmonic. 

Figure 13 ( d )  shows that while the quadratic energy transfer rate in Case IV is of the 
same order as that observed in Cases I, 11, and 111, the linear energy transfer rates 
decrease sharply between Rx/h, = 1.3 and 1.6. By comparison with figure lo@) it is 
noted that the suppression of subharmonic growth in this region is largely due to the 
sharp decrease in the linear energy transfer rate. This suggests that parametric energy 
transfer is not particularly efficient in this region. Further downstream, between 
R x / A o  = 2.0 and 3.2, the linear energy transfer rate increases (figure 13d) and is 
accompanied by a growth of the subharmonic component (figure lob), indicating that 
the efficiency of the parametric mechanism in transferring energy to the subharmonic 
has increased. 

4. Discussion 
The above measurements show that by exciting the flow at the fundamental and 

subharmonic modes at different relative phases, the downstream characteristics of the 
phase difference and coupling between the fundamental and subharmonic are altered, 
as seen in figures 7 and 8. Table 1 shows the different characteristics at two downstream 
locations. The first, at Rx/h, = 0.32, is in the linear instability region. The second, at 
R x / A ,  = 1.3, marks the end of the region of exponential growth and the onset of the 
parametric and nonlinear activities. The effects of the phase relation (i.e. difference and 
coupling) between the fundamental and the subharmonic, such as those given in table 
1, on the growth of the subharmonic are considered. 

The downstream development of the fundamental mode, shown in figure lO(b), 
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&/A, = 1.6 Subharmonic Parametric energy Phase speed ratio 
growth transfer rate C,cf/2)/Crcf) 

Case @cf0)-2@cf0/2) bzUo, fo/2) at &/A, = 1.6 at &/A, = 1.6 at &/A,, = 1.3 
I 0 .089~  0.92 (high) continuous 0.027 0.99 
I1 0.24471 0.91 (high) continuous 0.028 0.96 
I11 0 .374~  0.87 (high) continuous 0.060 1.02 
IV 0 .203~  0.13 (low) suppressed 0.003 1.37 
Natural -0 .039~ 0.35 (low) suppressed 0.002 1.24 

TABLE 2. 

&/A,  = 2.0 Subharmonic Parametric energy Phase speed ratio 
growth transfer rate C,cf/2)/C,cf) 

Case @cf,) -2@cf0/2) bBU0, fo/2) at &/A, = 2.0 at &/Ao = 2.0 at &/A, = 2.0 
IV 0.17~ 0.84 (high) resumed 0.053 0.932 
Natural 0.22x 0.43 (moderate) resumed 0.065 0.940 

TABLE 3. 

shows a very weak dependence on its phase relation with the subharmonic. In contrast, 
the growth of the subharmonic, beyond the initial region of linear instability, is 
distinctly influenced by its changing phase relation with the fundamental as shown in 
figure 11. In Cases I, 11, and 111, where the coupling levels are large and the phase 
differences approach zero as the linear stage of transition comes to an end at 
Rx/& = 1.3, subharmonic growth is continuous. In contrast, in Case IV, where the 
phase coupling levels between the two modes are low at the end of the linear instability 
region, subharmonic growth is suppressed for roughly one wavelength of downstream 
distance. Further downstream, as the level of coupling between the two modes in Case 
IV again increases, and the phase difference approaches zero, the subharmonic mode 
resumes its growth just as observed in Cases I, 11, and 111. 

These results indicate that a reduction in the coupling level between the fundamental 
and the subharmonic results in a suppression of subharmonic growth and that in all 
cases maximum amplification of the subharmonic takes place at a critical phase 
dzference that is close to zero. Monkewitz (1988) showed that the reduction in the 
subharmonic growth rate over a substantial region and its later amplification further 
downstream takes place for certain fundamental-subharmonic phase relation and 
fundamental amplitude. Monkewitz suggested that the reduction in the subharmonic 
growth rate is related to the shredding mechanism observed in the numerical studies of 
Riley & Metcalfe (1980) and Patnaik et al. (1976). This indicates that our Case IV may 
correspond to the ' shredding' behaviour. 

Measurements of the local wavenumber and phase speeds of the subharmonic and 
fundamental show that when the coupling between the fundamental and subharmonic 
modes is high, and when the phase difference is close to zero, the condition of matching 
phase speeds required for spatial resonance between the two modes is satisfied, table 
2. This matching is maintained over the region where the subharmonic gains energy, 
figure 7. In contrast, when the phase coupling is low and the phase difference is 
irregular, the phase speed matching condition is not met and subharmonic growth is 
suppressed, table 2. The delay in achieving phase speed matching conditions observed 
in Case IV is also observed in the natural excitation case, see Haj et al. (1992). This 
is in basic agreement with the analytical studies of Kelly (1967) and Monkewitz (1988) 
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which require phase-speed matching as a condition for efficient energy transfer. It is 
important to note here that because the subharmonic is spatially growing, any 
significant energy transfer requires that resonant coupling (i.e. phase speed matching) 
takes place over a spatial streamwise interval. The results presented here show that 
while the phase-speed ratio varies from one location to another, the phase-speed 
matching requirement is satisfied over streamwise distances of the order of the 
wavelength of the fundamental mode, A,, which is equal to 1.98 cm in this case. 

The influence of the fundamental-subharmonic phase relation on subharmonic 
growth was also investigated to determine its effect on the parametric mechanisms 
responsible for transfer of energy to the subharmonic (Hajj et al. 1992). Table 2 shows 
that in regions where coupling between the two modes is low, the level of parametric 
energy transfer is low. When the coupling level between the two modes is large and the 
phase difference is equal to zero, the parametric transfer of energy is high, table 3. The 
results also show that the fundamental-subharmonic quadratic power transfer rates 
are negligible in comparison with the quasi-linear parametric energy transfer. The 
growth of the subharmonic beyond the region of linear instability is clearly the result 
of parametric resonance energy transfer to the subharmonic, regardless of the initial 
phase conditions, in all cases studied here, both natural and controlled. 

A comparison of subharmonic growth and related energy transfer mechanisms 
under different phase-controlled and natural transition conditions suggests that Case 
IV comes closest to matching natural transition behaviour as defined by subharmonic 
growth (figure 10a), coupling characteristics (figure 8) and energy transfer mea- 
surements (figure 12). In both natural and Case IV excitation cases, the drop in the 
coupling level is accompanied by a suppression of the subharmonic growth at the onset 
of parametric interaction. This indicates that perfect subharmonic growth and phase 
coupling, as required for maximum subharmonic growth according to theory, does not 
take place under the natural conditions. This is not surprising as each tunnel has its 
own background excitation field that sets the initial conditions for so-called ‘natural’ 
transition and these phase conditions and coupling must be determined before a 
meaningful comparison of natural experiments can be made with theory. 

5. Conclusions 
The results presented here show that subharmonic growth is dependent on its local 

phase relation with the fundamental. When phase coupling between the fundamental 
and subharmonic modes is high and when the phase difference is close to zero, the two 
modes travel at the same phase speed and parametric energy transfer to the 
subharmonic is efficient. This results in the subharmonic gaining energy and continuing 
its growth beyond the linear instability region. In contrast, when the coupling between 
the fundamental and subharmonic modes is low and the phase difference between the 
two modes is irregular, parametric energy transfer is not efficient and spatial resonance 
matching conditions are not met. This results in a suppression of the subharmonic 
growth beyond the linear instability region until, further downstream, the coupling 
level increases and the phase difference approaches zero. Then, the fundamental and 
subharmonic modes start to travel at the same phase speed and parametric energy 
transfer becomes efficient enough for the subharmonic to resume its growth. Based on 
these results, we conclude that maximum subharmonic growth via parametric 
resonance takes place at a critical phase diference close to zero. The results show 
qualitative agreement with the numerical work of Riley & Metcalfe (1980) and the 
theoretical analyses of Kelly (1967) and Monkewitz (1988). 
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